On the Value-Distribution of Hurwitz Zeta-Functions with Algebraic Parameter

نویسندگان

چکیده

We study the value-distribution of Hurwitz zeta-function with algebraic irrational parameter $$\zeta (s;\alpha )=\sum _{n\ge _0}(n+\alpha )^{-s}$$ . In particular, we prove effective denseness results and its derivatives in suitable strips containing right boundary critical strip $$1+i{\mathbb {R}}$$ This may be considered as a first “weak” manifestation universality for those zeta-functions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the distribution of zeros of the Hurwitz zeta-function

Assuming the Riemann hypothesis, we prove asymptotics for the sum of values of the Hurwitz zeta-function ζ(s, α) taken at the nontrivial zeros of the Riemann zeta-function ζ(s) = ζ(s, 1) when the parameter α either tends to 1/2 and 1, respectively, or is fixed; the case α = 1/2 is of special interest since ζ(s, 1/2) = (2s − 1)ζ(s). If α is fixed, we improve an older result of Fujii. Besides, we...

متن کامل

Analytic continuation of multiple Hurwitz zeta functions

We use a variant of a method of Goncharov, Kontsevich, and Zhao [Go2, Z] to meromorphically continue the multiple Hurwitz zeta function ζd(s; θ) = ∑ 0<n1<···<nd (n1 + θ1) −s1 · · · (nd + θd)d , θk ∈ [0, 1), to C, to locate the hyperplanes containing its possible poles, and to compute the residues at the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).

متن کامل

Moments of Hypergeometric Hurwitz Zeta Functions

This paper investigates a generalization the classical Hurwitz zeta function. It is shown that many of the properties exhibited by this special function extends to class of functions called hypergeometric Hurwitz zeta functions, including their analytic continuation to the complex plane and a pre-functional equation satisfied by them. As an application, a formula for moments of hypergeometric H...

متن کامل

Joint Value-distribution Theorems on Lerch Zeta-functions. Ii

We give corrected statements of some theorems from [5] and [6] on joint value distribution of Lerch zeta-functions (limit theorems, universality, functional independence). We also present a new direct proof of a joint limit theorem in the space of analytic functions and an extension of a joint universality theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 2021

ISSN: ['0176-4276', '1432-0940']

DOI: https://doi.org/10.1007/s00365-021-09561-2